
How to Identify and Specify Hydraulic Pumps

REPLACING AN EXISTING PUMP

1. Identify Series, use chart below if necessary.

SERIES	No. & Diam.	HOUSING HEIGHT	HOUSING WIDTH = Gear Width + Thrust Plates:	THREADED BEARING RETAINER
P1200	10 - 1/2"	7"	1/2"	NO
P1500	4 - 1/2"	5.5"	3/4"	NO
P2100	4 - 9/16"	5.00"	3/4"	NO
P2500	4 -5/8"	6.25"	3/4"	YES
P3700	8 - 1/2"	7.3125"	1"	YES
P3000/3100	4 - 5/8"	5.5"	3/4"	NO
P5000/5100	4 - 5/8"	6.25"	3/4"	NO
P7500/7600	8 - 5/8"	8.00"	1"	NO

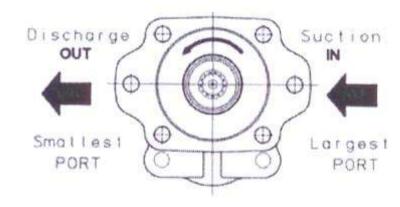
2. Gear Width: Housing Width minus Thrust Plates (see chart above)

Housing Width

- 3. Shaft Diameter and Configuration (# splines or key size if round)
- 4. Mounting Flange: Bolt Circle Diameter _____ Pilot Diameter _____ Number Studs _____

 NPT ______
 ODT ______
 Split Flange ______
 Location _____

 NPT ______
 ODT ______
 Split Flange ______
 Location ______


6. Rotation:

Porting: Inlet


Outlet

5.

Looking at the shaft end, belly down, inlet on the left = Clockwise Looking at the shaft end, belly down, inlet on the right = Counterclockwise Bi-rotation Pumps usually have equal size ports but still must be plumbed correctly.

COUNTER-CLOCKWISE VIEWED FROM DRIVE SHAFT END

CLOCKWISE VIEWED FROM DRIVE SHAFT END

Helpful Formulas

PUMP INPUT HORSEPOWER

PUMP INPUT TORQUE

PUMP OUTPUT FLOW RATE

DISPLACEMENT OF PUMP

PUMP INPUT SPEED

GPM USING PTO

 $HP = GPM \times PSI / 1714 / E$

 $T = GPM \times PSI \times 3.06 / RPM / E$

E = Efficiency D = Displacement

 $GPM = D \times RPM \times E / 231$ $D = GPM \times 231 / RPM / E$

 $RPM = GPM \times 231 / D / E$

 $GPM = Eng RPM \times \%PTO \times D \times E / 231$